Evaluation of Text Complexity
New York State English Language Arts
Common Core Test

Released Passages from 2018

Anthony Cardinale
Third Grade Teacher
March 2019

Dear Educators and Parents,

The New York State Common Core Exams have been in place since the spring of 2013. Almost immediately, educators became concerned with the developmental appropriateness of these assessments after the first set of sample passages was released by the State Education Department.

Educators have used the Fry Readability Graph to determine text complexity for over 40 years. In my 16 years as an elementary teacher, I have found its results to be accurate and consistent with widely used book-leveling systems such as the Fountas & Pinnell Guided Reading Levels and the Developmental Reading Assessment levels.

Using the Fry Readability Graph to evaluate the released passages from the 2018 Common Core English Language Arts exam, I have determined the following:

- one passage was written on a third grade level
- one passage was written on a fourth grade level
- one passage was written on a fifth grade level
- one passage was written on a sixth grade level
- one passage was written on a seventh grade level

It is also important to keep in mind that 68% of the questions and 79% of the points came from passages written above grade level standards. This is in stark contrast to the 10% of level 4 questions teachers include when creating their own classroom assessments.

In my professional opinion, texts chosen for the purpose of evaluating the reading proficiency of elementary students should range from one grade level below to one grade level above the students being assessed. This range allows both struggling and accelerated readers the opportunity to demonstrate the skills they have learned throughout the year. When students are tasked with reading literature too far above developmentally appropriate levels, their answers to even the most carefully worded questions become unreliable. Educators have no way of knowing if their students misunderstood the passage or if they could not successfully execute the skills required to answer a given question.

It is my hope that the results shared in this document will continue to spark a conversation across New York that will lead to adjustments being made in our state's student testing program.

Sincerely,

Anthony Cardinale
Directions
Read this passage. Then answer questions 1 through 6.

Alex, the Talking Parrot
by Dorothy Hinshaw Patent

1 Parrots that are trained to talk often say silly things like “Polly want a cracker.” Although these birds have learned to imitate the sounds that make up the words, they don’t really know what they’re saying. But there is one parrot who speaks more than a hundred words and actually understands their meanings. He is an African gray parrot named Alex.

2 Dr. Irene Pepperberg, a research scientist, has worked with Alex for many years. Teaching Alex to speak and understand wasn’t easy at first. He had to learn one word at a time. Irene and an assistant would teach Alex a word by showing him what a word meant. Irene would hold up an object, saying, “What’s this?” Her human partner would give the word—“pasta,” for example—while Alex watched. Irene would praise her partner, then ask Alex the name of the object. When he got it right, Irene would praise him and give him the object to play with as a reward. It took Alex many weeks to learn his first word. After that, each new word became easier and easier for him.

3 Why did Irene spend so much time getting a parrot to talk? Scientists like Irene are interested in discovering how intelligent animals are and how their brains work. But studying animal intelligence has always been difficult, partly because animals haven’t been able to communicate clearly with humans. Teaching Alex to speak words that he understands has let Irene talk to him directly. She can ask him questions, and he can answer them in English. In this way, Irene is finding out what sorts of things Alex’s brain can do. She has found that parrots are much smarter than scientists used to think. The word “birdbrain,” which means someone who isn’t very smart, certainly doesn’t apply to Alex.

4 Alex can identify over forty kinds of objects, five different shapes, five materials, and seven colors, and he can use his knowledge to solve problems and answer questions. For example, from a group of objects, he can pick out a number of things of a certain color, up to the number six. He can also make comparisons, such as bigger or smaller and same or different, between objects.

5 “Want wheat?” Alex says loudly. Irene explains to him that she doesn’t have any shredded wheat for him. “How about some crackers, Alex?” she asks.
“No, no—want wheat!” he replies.

Because it's time for them to work, Irene ignores his request and shows Alex a tray with simple objects scattered over it: a yellow plastic key, a green wooden square, a five-cornered piece of yellow felt, a gray rawhide rectangle, a yellow paper triangle, a red plastic square, and a blue Play-Doh square.

“What material is green, Alex?” Irene asks.

Alex glances over the assortment, then answers, “Wood!” in his clear but croaky parrot voice.

“Good birdie,” says Irene as she nuzzles him and hands him the green square. Alex nibbles at it for a moment, then he drops it.

“How many yellow?” asks Irene.

Alex takes his time looking over the bright, colorful display on the tray.

“Three,” he answers.

Irene praises him again. “Good boy, good birdie,” she says as she hands him the yellow key to play with.

Alex mouths the key, nibbling at it gently before dropping it.

“Wanna go shoulder,” he announces.
“O.K., you can come onto my shoulder,” answers Irene. She puts out her hand. Alex climbs aboard, and she puts him on her shoulder. He rubs his head against Irene's cheek. “Do you want some corn?” asks Irene.

“Soft corn,” answers Alex, and Irene holds out her hand with a few kernels on it. Alex carefully takes one kernel into his mouth and eats.

Alex has shown us that birds like parrots can understand categories such as shape, color, and size. They can solve problems and recognize numbers. Before Alex came along, scientists did not believe that animals with such small brains could do these things.

Alex uses his ability to talk outside of work sessions, too. At the end of the day, Irene tells Alex she is leaving.

“I'm going to dinner now,” she says. “You be good.”

“You be good,” Alex answers.

“See you tomorrow,” says Irene.

“Bye,” says Alex.

“Bye,” she responds.

“I love you,” croaks Alex.

Irene's last words as she goes out the door are “I love you, too.”
Directions
Read this story. Then answer questions 19 through 24.

The Shark Kite
by Jane McAdams

"Oh, no!" said Stella, as the string of her shark kite tangled with the string of a biplane kite. The biplane dove toward the ground, the grinning shark spiraling behind it. "I feel like a spider in a web," she said, frowning as the tangled strings drifted down around her.

"I think that shark kite has too many strings," said the owner of the biplane kite, as he untangled his string from Stella's.

"My kite doesn't have too many strings," said Stella. "It's a grownup's kite. That's why it's complicated to fly."

"You should really try flying a paper plate," said Stella's friend Robby. Stella looked at Robby's kite. He had decorated a plate with stickers and a long yellow streamer and attached a string to it. Right now, his paper plate was flying so high that Stella could hardly see it.

"Your shark kite hasn't flown as high as my paper plate all day," said Robby, wiping his nose on his sleeve.

"Paper plates are for babies," said Stella. She felt like being mean, because her shark kite could hardly fly.

Just then Stella noticed a fluffy pink jellyfish kite sailing overhead, bobbing a little as it passed Robby's paper plate. Stella wished she could trade her shark for that jellyfish.

Stella wound the string of her fallen kite around its spool. Then, holding the string near the shark's belly, she started running. If she could catch a tiny breeze, her kite would fly.

"Stella, it's almost time to go!" called Stella's mother from a park bench in the shade. "We have to pick up your sister at the pool."

"Come on, shark, fly!" Stella said as she tossed the kite into a little puff of wind. For a moment, the shark looked as if it was swimming up into the sky. Then, it dove back toward the grass, teeth and all.

"Maybe it's too heavy," said Robby. He tugged lightly on the string of his paper plate, which dipped gently in the air.
“It's not heavier than that one,” said Stella. She pointed at an enormous monster truck kite gliding past Robby's paper plate. The monster truck had big black wings. “I bet that kite weighs more than you do, Robby,” said Stella.

Robby squinted at the sky. “No, it doesn’t. I weigh forty pounds,” he said.

“Stella, your sister is waiting,” her mother called again.

“One more try, Mom,” yelled Stella, running with the shark. This time, the shark kept its nose pointed downward the whole time, refusing to fly at all. Stella tripped over the shark's fin and fell into the dirt.

“Come on, brush yourself off, Stella,” said her mother. “We're leaving.”

“You can take my paper plate if you want,” said Robby. “At least you'll get to fly something today.” He looked at Stella hopefully.

Stella sighed. Robby's paper plate was nothing like the fancy shark she had imagined flying. But it did fly pretty high.

“O.K.,” Stella agreed with a shrug. She took Robby’s string and felt the strong, steady pull of the kite dancing at its end. She gave a slight tug. The paper plate swirled and floated even higher on the breeze. Stella smiled at Robby. “You're right,” she said. “Paper plates do make good kites.”

“You can keep it,” said Robby. “I'll make another one next weekend.”

“Want to borrow the shark, then?” asked Stella, handing the tangle of strings and the grinning shark to Robby. “Maybe you can make it fly.”

“Hey, thanks,” he said. “See you next weekend, Stella.”

Stella and her mother walked toward the car. Stella held the string of her new kite, and the paper plate sailed along above them, its yellow streamer wriggling through the air.

“What happened to your shark kite?” asked Stella’s mother.

“Robby and I swapped for a while,” Stella replied.

As Stella rode in the car, she held on to the paper plate's string and watched it bob next to her window. “I bet that big old shark couldn't do this!” she laughed.
Directions
Read this passage. Then answer questions 25 and 26.

How We Use Glass
by Chris Oxlade

Glass and Its Properties
1 All the things we use at home, school, and work are made from materials. Glass is a material. It can be used for all sorts of different jobs. For example, we make ornaments from glass, we cover buildings with glass, and a type of glass even carries our emails around the world.

2 Properties tell us what a material is like. Glass can be transparent, which means light goes through it. This is a property of glass. Glass can also be clear or colored. It has a very smooth surface. It is hard but it is also brittle, which means it breaks before it bends. Air and water cannot flow through glass and neither can electricity.

Where Does Glass Come From?
3 Glass is not a natural material. It is made in factories. But the raw materials for glass are natural. They come from the ground. The main raw material is sand, the same as the sand on a beach. There are different kinds of glass. To make each different kind, different chemicals are added to the sand. Most glass is soda glass. It is made from sand, limestone, and a chemical called soda ash.

Making glass
4 At a glass factory the ingredients are mixed together and poured into a huge tank. The glass mixture is heated to about 2,732°F (1,500°C), which is many times hotter than the temperature in a kitchen oven. The sand melts and mixes with the other ingredients. This makes hot, liquid glass.

Glass Windows
5 Most of the glass made in factories is used in windows. Glass is a good material for making windows because it is transparent, waterproof, and airtight. So a glass window lets light in, but it keeps out wind and rain. It also keeps warm air in, stopping a room from getting cold. Glass used in windows is called glazing.
Making window glass

Windows are made from a type of glass called float glass. To make float glass, melted glass is poured into a huge bath of a molten metal called tin. The glass spreads out on top of the tin to make a flat, thin sheet. The sheet is cooled very slowly, which keeps it from cracking.

\[\text{Itten} = \text{melted by heat}\]
Directions
Read this passage. Then answer questions 27 through 29.

The Great Horned Owl

by Shirley Anne Ramaley

There's a call in the air. "Whooo, hoo-hoo, hoo, hoo." It almost sounds like, "Who's awake, me too." There is only one bird that sounds like this—the great horned owl. It can be heard anywhere, because these owls live in mountain forests, desert canyons, city parks, and even on some rooftops of homes. They are very widespread and adapt easily to many environments. They live all over North America, Central America, and certain regions of South America.

Great horned owls hunt just about anything that's not too big for them. They like insects and scorpions, great blue herons, snakes, jackrabbits, mice, other birds, and lots more. They also like cats, so keep your cat inside. Another delicious meal for a great horned owl is a skunk! The world is just one big smorgasbord for this big owl.

smorgasbord = meal with many foods
The owls nest in January and raise their families in winter. The female sits on the eggs, and the male brings her food. The eggs take about a month to hatch. For a while, the babies, or "owlets," huddle under the mother's wings. Gradually, the little heads will peek out and eventually move out from under their mother's wings. Both parents closely guard the owlets.

The owlets start walking around the nest in about another month, often crowding each other. The parents usually sit nearby, perhaps in a tree branch, and guard the nest. Don't ever go near a great horned nest. Those parents won't like it, and they aren't afraid to attack anything that threatens the family.

The parents bring food to the nest to feed the owlets. Soon the owlets begin to flap their wings, getting ready for the day when they fledge, or fly away from the nest. The closer they get to fledging, the more they practice flapping their wings. When they are about six weeks old, it's time to go. They don't all leave at the same time, but usually within a few days of each other.

At six weeks old, owlets start walking outside the nest. They are able to fly well when they reach nine to ten weeks old.
Directions
Read this story. Then answer questions 30 and 31.

Excerpt from Jumanji
by Chris Van Allsburg

“What’s that?” Judy asked.
“It’s a game,” said Peter, handing her the box.
“JUMANJI,” Judy read from the box, “A JUNGLE ADVENTURE GAME.”
“Look,” said Peter, pointing to a note taped to the bottom of the box. In a
childlike handwriting were the words “Free game, fun for some but not for all.
P.S. Read instructions carefully.”
“Want to take it home?” Judy asked.
“Not really,” said Peter. “I’m sure somebody left it here because it’s so boring.”
“Oh, come on,” protested Judy. “Let’s give it a try. Race you home!” And off
she ran with Peter at her heels.
At home, the children spread the game out on a card table. It looked very
much like the games they already had. There was a board that unfolded,
revealing a path of colored squares. The squares had messages written on them.
The path started in the deepest jungle and ended up in Jumanji, a city of golden
buildings and towers. Peter began to shake the dice and play with the other
pieces that were in the box.
“Put those down and listen,” said Judy. “I’m going to read the instructions:
‘Jumanji, a young people’s jungle adventure especially designed for the bored
and restless.’”
“A. Player selects piece and places it in deepest jungle. B. Player rolls dice and
moves piece along path through the dangers of the jungle. C. First player to reach
Jumanji and yell the city’s name aloud is the winner.”
“Is that all?” asked Peter, sounding disappointed.
“No,” said Judy, “there’s one more thing, and this is in capital letters: ‘D. VERY
IMPORTANT: ONCE A GAME OF JUMANJI IS STARTED IT WILL NOT BE
OVER UNTIL ONE PLAYER REACHES THE GOLDEN CITY.’”
“Oh, big deal,” said Peter, who gave a bored yawn.
"Here," said Judy, handing her brother the dice, "you go first."

Peter casually dropped the dice from his hand.

"Seven," said Judy.

Peter moved his piece to the seventh square.

"'Lion attacks, move back two spaces,'" read Judy.

"Gosh, how exciting," said Peter, in a very unexcited voice. As he reached for his piece he looked up at his sister. She had a look of absolute horror on her face.

"Peter," she whispered, "turn around very, very slowly."

The boy turned in his chair. He couldn't believe his eyes. Lying on the piano was a lion, staring at Peter and licking his lips.

The lion roared so loud it knocked Peter right off his chair. The big cat jumped to the floor. Peter was up on his feet, running through the house with the lion a whisker's length behind. He ran upstairs and dove under a bed. The lion tried to squeeze under, but got his head stuck. Peter scrambled out, ran from the bedroom, and slammed the door behind him. He stood in the hall with Judy, gasping for breath.

"I don't think," said Peter in between gasps of air, "that I want ... to play ... this game ... anymore."

"But we have to," said Judy as she helped Peter back downstairs. "I'm sure that's what the instructions mean. That lion won't go away until one of us wins the game."

Peter stood next to the card table. "Can't we just call the zoo and have him taken away?" From upstairs came the sounds of growling and clawing at the bedroom door. "Or maybe we could wait till Father comes home."

"No one would come from the zoo because they wouldn't believe us," said Judy. "And you know how upset Mother would be if there was a lion in the bedroom. We started this game, and now we have to finish it."

Peter looked down at the game board. What if Judy rolled a seven? Then there'd be two lions. For an instant Peter thought he was going to cry. Then he sat firmly in his chair and said, "Let's play."
GRAPH FOR ESTIMATING READABILITY-EXTENDED
BY EDWARD FRY, PROFESSOR EMERITUS, RUTGERS UNIVERSITY